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Scaling of avalanche queues in directed dissipative sandpiles
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Using numerical simulations and analytical methods we study a two-dimensional directed sandpile automa-
ton with nonconservative random defects~concentrationc) and varying driving rater. The automaton is driven
only at the top row and driving rate is measured by the number of added particles per time step of avalanche
evolution. The probability distribution of duration of elementary avalanches at zero driving rate is exactly
given by P1(t,c)5t23/2 exp@t ln(12c)#. For driving rates in the interval 0,r<1 the avalanches are queuing
one after another, increasing the periods of noninterrupted activity of the automaton. Recognizing the prob-
ability P1 as a distribution of service time of jobs arriving at a server with frequencyr, the model represents
an example of the clasŝE,1,GI/`,1& server queue in the queue theory. We study scaling properties of the
busy period and dissipated energy of sequences of noninterrupted activity. In the limitc→0 and varying linear
system sizeL!1/c we find that at driving ratesr<L21/2 the distributions of duration and energy of the
avalanche queues are characterized by a multifractal scaling and we determine the corresponding spectral
functions. ForL@1/c increasing the driving rate somewhat compensates for the energy losses at defects above
the liner;Ac. The scaling exponents of the distributions in this region of phase diagram vary approximately
linearly with the driving rate. Using properties of recurrent states and the probability theory we determine
analytically the exact upper bound of the probability distribution of busy periods. In the case of conservative
dynamicsc50 the probability of a continuous flow increases asF(`);r 2 for small driving rates.

PACS number~s!: 05.65.1b, 64.60.Ht, 45.70.Ht, 02.50.Hb
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I. INTRODUCTION

In the past decade the sandpile type of cellular autom
played a special role in understanding self-organized criti
ity in nonlinear dynamical systems~for a recent review see
Ref. @1#!. In sandpile automata the properties of the dyna
ics, which are essential for the occurrence of self-organi
critical states, can be monitored in a direct manner. Ap
from the relaxation rules, these are the following properti
type of driving and time-scale separation; conservation
of the dynamics; direction of mass flow; and role of boun
aries. In addition, the Abelian nature of the toppling rules
some sandpile automata enabled derivation of certain e
results@2,3#, in contrast to other dynamical systems whe
such calculations are not available. Numerous sandpile m
els, both deterministic and stochastic@1#, are shown to ex-
hibit dynamic critical states in the limit of ‘‘infinitely slow’’
driving ~i.e., at zero driving rater 50). In this limit a new
avalanche is initiated only after the previous one h
stopped, thus the time-scale separation is exactly obser
On the time scale of perturbations, the avalanche evolutio
seen as occurring instantly. The existence of the crit
states in the case of directed Abelian sandpile automato
zero driving rate has been proved exactly by Dhar and
maswamy@2#. At this point it is interesting to mention tha
the model studied in Ref.@2# is characterized by local driving
and deterministic conservative dynamics. The automa
with conservative stochastic dynamics, on the other ha
has been shown to belong to another universality class@4#.

*Electronic address: Bosiljka.Tadic@ijs.si
†Electronic address: priezzvb@thsun1.jinr.ru
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The presence of nonconservative defects in Dha
Ramaswamy automaton leads to a subcritical behavior@5#.

The behavior of driven dynamical systems at finite dr
ing rates (r .0) represents an important subject both f
theoretical and practical reasons. A finite driving rate m
appear either as a control parameter set from outside, or
probability distribution originating from another coupled st
chastic process. In practice, the systems are driven by
external field, which oscillates with a finite frequency. E
amples are Barkhausen noise@6#, integrate and fire oscilla-
tors @7#, granular material in rotating drums@8#, etc. Queuing
jobs at a server@9#, e.g., in teletraffic, is an example wher
the frequency of arriving jobs is given by a random proce

Theoretically at finite driving ratesr .0 the probability
that a new avalanche starts before the previous one
stopped increases with increasingr. This obviously leads to
different statistics of avalanches, where an avalanche is
derstood to represent a noninterrupted activity of the syst
For large driving rates a continuous flow~an avalanche tha
never stops! is expected in sandpiles. Similarly, a sing
spanning cluster may occur in driven disordered syste
Therefore, a time-scale separation becomes less and les
parent with increasingr. In addition, by increasing driving
rates, the local driving loses its strict sense. Thus fast dri
sandpiles are placed between strictly local driving, where
system is driven at a single~random! site, and global driving,
where the same perturbation applies to all sites in the sys
The role of the conservation law~conservation of number o
grains in the interior of the system! is also expected to be
changed at finite driving rates. In ther→0 limit, locally
driven nonconservative systems appear to be subcritical@10#,
whereas when the driving is global the critical states m
appear even if the dynamics is dissipative@11,7#. So far nei-
3266 ©2000 The American Physical Society
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PRE 62 3267SCALING OF AVALANCHE QUEUES IN DIRECTED . . .
ther an exact theory nor a renormalization-group analysi
fast driven critical systems has been done. A general q
tion concerning the existence of critical states at finite dr
ing rates and universal scaling properties of the system in
limit of large distances and long times remains to be
swered.

Recently two numerical simulations elucidated certain i
portant properties of sandpiles at finite driving rates. In
one-dimensional ricepile model Corral and Paczuski@12#
have first introduced avalanches for a finite driving rate
noninterrupted periods of activity and have shown that th
avalanches diverge at ratesr>r c(L);L20.20 for a givenL.
The rational behind this conclusion is that an ever-runn
avalanche occurs for driving ratesr;1/̂ t&0, where ^t&0
;Lz(22t t) is the average duration of avalanches in zero d
ing rate @12#. In another example Barrat, Vespignani, a
Zapperi@13# have shown that in a two-dimensional symm
ric Abelian sandpile model mixing of time scales at fin
driving rates leads to correlations that appear to violate
fluctuation-dissipation theorem.

In this work we study a simple two-dimensional mod
with strictly directed flow of grains and deterministic to
pling rules. We add particlesonly at the top rowwith driving
rate r. The driving rater is defined as a number of adde
particles per time step of avalanche evolution. We cons
both conservative and nonconservative dynamics. A frac
of sitesc are considered to be annealed nonconservative
fects. By toppling at a defect site two grains are lost, th
affecting the propagation of avalanche below that site@14#.
When c50 the dynamics is strictly conservative. In ther
50 limit and c50 the model has been exactly solved
Dhar and Ramaswamy@2#. The critical states were shown t
consist of heightsh50 andh51 occurring with equal prob-
ability 1/2 at each lattice site. The duration of an avalanch
given by the probability distribution for larget

P1~ t !;t23/2. ~1!

In the presence of nonconservative defects it has been sh
@5,15# that the screening of the power-law distribution in E
~1! occurs as

P1~ t !;t23/2exp~2t/j!; j;1/c. ~2!

In this paper we will refer to the distributions in Eqs.~1! and
~2! as probability distributions ofelementaryavalanches, to
be distinguished from thecombinedavalanches, which occu
at finite driving rates and which consist of a series of elem
tary avalanches. Up to relatively high driving ratesr 51 the
model has the property of successive elementary avalan
run one after the other, in contrast to cases studied in R
@12,13#, where merging of avalanches may occur at any fin
r. After an elementary avalanche is over the system is c
acterized by statistically unchanged distribution of heigh
owing to a weak correlation between the avalanches in
recurrent states. A finite probability of avalanche collisio
which accelerates flow of grains, occurs in this model o
for r .1. Here we restrict the study to the caser<1, where
the formation of avalanche queues is a dominant phen
enon that determines the scaling properties of the system

The problem of avalanche queue in our model can
regarded as an example of the server queue@9# of the class
of
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^E,1,GI/`,1&, which is studied as a model in the analysis
various applied problems, e.g., in telecommunications, ins
ance, etc. These analogies are made clear by noticing tha
avalanches of a directed sandpile model have the corresp
ing terms in the language of the queue theory as follows:~i!
elementary avalanche—customer;~ii ! duration of elementary
avalanche—service time;~iii ! driving rate—frequency of ar-
rivals of customers;~iv! number of elementary avalanche
coexisting at a given moment of time—number of workin
servers;~v! duration of a combined avalanche—busy perio
The notation̂ E,1,GI/`,1& means that we deal with custom
ers arriving by one and being served by one. The letteE
means that the arrival times are generated by a Berno
process with the distribution Prob(t5k)5pk(12p);k
50,1,2, . . . ;p.0. The symbolGI/` means that the servic
times are identical independently distributed~i.i.d.! random
variables and the infinite number of servers provides a n
restricted number of customers that can be served simu
neously. Despite much literature devoted to this subject@9#,
most of papers focus on the distribution ofqn , the number of
working servers at a given moment of time. The importan
of the tail behavior of the busy period distribution for flu
queues in telecommunications, generalized processor s
ing, and other applications was recently pointed out in R
@16#. Here we concentrate on some other properties of
queue: the scaling behavior of the busy period and dissip
energy distribution.

Given the duration of elementary avalanches in Eq.~1!,
we may conclude that the directed sandpile model forr<1
represents a special case of the queue theory with the po
law distribution of the service time with the exponentn
53/22151/2. This implies that the average service tim
per customer divergeŝt&→`. In practice, service times ar
restricted to finite values, which correspond to the power-l
distribution with 1,n,2 @16#. This may explain why the
queue with the distribution of the type given in Eq.~1! has
not been studied so far. In our model a finite average du
tion of elementary avalancheŝt&,` is achieved in two
cases:~a! In the case of distribution in Eq.~1! when the
system sizeL is finite, hence the distribution is truncated
t5L; ~b! In the case of finite dissipationc.0, where the
distribution in Eq.~2! has a characteristic durationj,` for
all finite c values~see Refs.@5,15# and below!.

For a finiteL we find a continuous flow phase~F! for low
dissipation and large driving rates, and three regions w
intermittent behavior of avalanche queues. These are reg
with subcritical ~S!, nonuniversal~N!, and multifractal~M!
behavior, shown schematically on the phase diagram in
1. When the length separationL@j holds, we find a line in
the (r ,c) plane where loss of particles on defects in the
terior of the pile becomes ‘‘compensated’’ by fast adding
particles from outside. In the region above the compensa
line the avalanche queues exhibit a scaling behavior with
scaling exponents depending on the driving rate: The slo
decrease, whereas the fractal dimensions increase with
ing rate. Cutoffs with a stretch-exponential behavior appe
In the limit c→0 and when the system sizeL!j is varied
multifractal scaling properties describe the scaled distri
tions, rather than a simple finite-size scaling.
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3268 PRE 62BOSILJKA TADIĆ AND VYATCHESLAV PRIEZZHEV
In general, the distributions of combined avalanches
characterized by a scaling function of two arguments of
form

P~X,r ,Lc!;X2tXP~XLc
2DX ,rL c

1/2!, ~3!

whereX represents either durationt or number of topplings
@17# n and Lc[min$j,L%. The corresponding fractal dimen
sionsDX are defined by

^X& l ;l DX, ~4!

where the average is taken over all combined avalanches
selected lengthl measured along the direction of transpo

Using analogy to the queue theory and the properties
the recurrent states we were able to derive an exact u
limit of the distributions of busy periods and to discuss t
limit L→`. We also derived the expression for the probab
ity of continuous flow in the conservative limit.

The paper is organized as follows: In Sec. II we define
model and consider the case of conservative dynamics
numerical simulations on finite lattice. In Sec. III we prese
results of simulations in the case of finite concentration
nonconservative defects. In Sec. IV we present details of
analytical results. The paper contains a short summary of
results and discussion in Sec. V.

II. MULTIFRACTAL QUEUES OF DHAR-RAMASWAMY
AVALANCHES

The sandpile automaton model introduced by Dhar a
Ramaswamy represents an example of a self-organized
cality with exact solution in the limit of zero driving rate@2#.
In this section we consider the same model at finite driv
rates 0,r<1. The dynamic rules of the model are summ
rized as follows@2#: We consider a two-dimensional squa
lattice oriented downward, with a dynamic variable-heig
h( i , j ) associated at each site. Grains are added at the
row only, and mass flow is only down. The toppling at a s

FIG. 1. Schematic phase diagram for a finite system sizeL.
Cross-hatched area represents a crossover region betweenj!L
~right! and j@L ~left!. Regions with distinct behavior of the ava
lanche queues are shown: subcritical~S!, nonuniversal~N!, multi-
fractal scaling region~M!, and flow phase~F!. Solid line represents
the compensation line. Transition to the flow phase is marked
(L) for c50 and by dotted line for smallc.0. In the origin (d)
only single Dhar-Ramaswamy avalanches occur.
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( i , j ) occurs deterministically wheneverh( i , j )>hc52, and
two grains are transferred downward, i.e.,

h~ i , j !→h~ i , j !22; h~ i 11,j 6!→h~ i 11,j 6!11, ~5!

where (i 11,j 6) represents two downward neighboring sit
to the site (i , j ).

The probability distribution of duration of avalanches

zero driving rateP1(t);t2t t
0P(tL21) with t t

053/2 given in
Eq. ~1! becomes exact at larget @2#. In addition the dynamic
exponentz051. This implies that the average duration^t&0

FIG. 2. ~Top! Growth of a combined avalanche in the case
conservative dynamics (c50) for driving rate r 50.05 and L
5100. Nine fronts of active sites~dark! are visible.~Bottom! A
complete combined avalanche in the case of dissipative dyna
with c50.02 and driving rater 50.5. Different shades of gray cor
respond to distinct toppling waves.
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PRE 62 3269SCALING OF AVALANCHE QUEUES IN DIRECTED . . .
;L1/2→`. Similarly, the areas enclosed by the boundary o
an avalanche is given by the distributionD(s,L)

;s2ts
0D(sL2Ds

0
), wherets

054/3 and the fractal dimensio
Ds

053/2. Note that the number of toppled grains at ea
active site is two, then the distribution of the number
toppled grains within an avalancheD(n) is described by the
same exponents, i.e.,tn

054/3 andDn
053/2 at zero driving

rate.
A finite driving rater .0 is implemented as follows. An

avalanche is started from the top and at each step of
avalanche progress a new particle is added with probabilr
at a random site at first row. We also consider a determini
addition of particles, i.e., we add a particle at regular int
vals Dt. Both approaches lead to the same results when
statistics is high enough. An added particle may trigge
new elementary avalanche before the previous one st
thus making a pattern of active sites distributed over
lattice. A snapshot of growth of a combined avalanche w
marked active sites is shown in Fig. 2~top!. A combined
avalanche~avalanche queue! is thus determined by a nonin
terrupted activity on the lattice and it stops when no m
active sites occur. Then a new avalanche is started. It sh
be noted that whenr .0 the number of added grains
higher than the number of combined avalanches. Ano
important remark is that the repeated toppling at a site m
occur as soon asr .0. This leads to the inequalitŷn&
.^s&, and thusDn.Ds , andz.1. The numerical simula-
tions confirm these conclusions~see below!. Typically, we
consider 23106 combined avalanches at each driving ra
and lattice size. Periodic boundary conditions are applied
the perpendicular direction.

FIG. 3. Double logarithmic plot of the integrated probabili
distribution of duration~busy periods! P(t,L) of queues of Dhar–
Ramaswamy avalanches vs durationt, measured in Monte Carlo
steps~MCS’s!. Fixed driving rater 50.05 and various lattice size
L524, 48, 96, 192, and 384 are used.~Inset! Multifractal spectral
functionF t(a t) vs a t obtained from the data in main figure accor
ing to Eq.~6! usingX051, L052.
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In this section we perform numerical simulations f
r .0 and finite lattice sizesL. The limit L→` will be dis-
cussed in Sec. IV. In Figs. 3 and 4 are shown the integra
probability distributions of durationP(t8>t,L) and number
of topplingsD(n8>n,L) for fixed driving rater 50.05 and
various lattice sizesL. It should be noted that both slopes an
cutoffs of these distributions appear to be different compa
to ones of the elementary avalanches. In particular, slo
decrease withr ~see a more detailed discussion in Sec. II!.
For instance atr 50.05 we findt t50.4 andtn50.3, in the
steep part, andt t50.31 andtn50.2 in the flat part near the
cutoff. A cutoff in the probability distribution of durations
appears~cf. Fig. 3!. The characteristic jump att5L is related
to the conditional probability: an activity lasts longer thanL
steps only if the preceding avalanches is not shorter that
5L. The jump decreases with increasing lattice size. It
interesting that these distributions cannot be scaled accor
to a simple finite-size scaling~with new exponents!, as one
may naively expect. Instead, we find that a multifractal sc
ing applies according to the law

P~X,L,r !5S L

L0
D FX(aX)

; aX5
log~X/X0!

log~L/L0!
, ~6!

where, as before,X stands fort or n. The corresponding
spectral functionsF t(a t) and Fn(an) are determined nu-
merically for r 50.05 and shown in the insets to Figs. 3 a
4, respectively. The spectrum depends on the driving r
For driving rates close to the liner;L21/2 extremely large
avalanches may appear and the scaling fits fail. The origin
multifractality in the queues of Dhar–Ramaswamy av
lanches can be found in the fact that an unrestricted mult

FIG. 4. Same as Fig. 3 but for the integrated distribution
number of topplings~mass! D(n,L) vs massn ~number of grains!.
Shown are only curves forL596, 192, and 384.~Inset! Spectral
function Fn(an) vs an . X050.9760.02, L052.1560.05.
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toppling at each site may occur, and that a toppling at a gi
site releases a local avalanche which propagates from
site downward.

For comparison we show how a finite-size scaling fit
the data fails. In Fig. 5 we present an attempt of scal
collapse of the data shown in Figs. 3 and 4 above, accor
to the formulaP(X,L)5L2lP(XL2DX). Note that the bes
collapse of the tails of distributions are obtained by fixing t
fractal dimensions asDt51.20 andDn51.75, which corre-
spond toaX at the shoulder of the spectrumF t(a t) and
Fn(an), respectively. Fixing a smaller~larger! value for the
fractal dimension leads to systematic shifts of the distri
tion tails to the right~left! with increasingL. The best fit
shown in Fig. 5 is obtained forl50.35, which satisfies
~within numerical accuracy! the scaling relationl5z(t t
21)5Dn(tn21) with tX21 determined at the flat part o
the distribution. However, as Fig. 5 shows, fixingDX andl
leads to the systematic shifts of the ‘‘horizontal’’ part of th
distributions to the right with decreasingL. Fixing the expo-
nents independently from the scaling relation results
crossing of the lines for differentL values.

For driving ratesr .L21/2 an ever-running avalanche ma
occur, representing a continuous activity on the lattice. T
flow phase can be characterized by an average numbe
topplings per site, which is expected to have a nontriviaL
dependence. The probability of occurrence of the flow ph
in the limit L→` will be discussed in Sec. IV.

III. NONUNIVERSALITY IN DISSIPATIVE DYNAMICS

In the presence of dissipative defectsc.0 the distribution
of elementary avalanches, which is given in Eq.~2!, appears
to have a finite characteristic lengthj,`. Thus the average
duration at zero driving rate is finitêt&0,`. Precise value
of the average duration is controlled by an external para
eter probability of dissipationc, and not by system sizeL,
provided thatL.j. The screening lengthj;1/c was first
estimated numerically in Ref.@5#. A more precise analytica
expression can be derived~see below and Ref.@15#! asj21

;2 ln(12c). Here we perform numerical simulations in th
caseL.j at driving rates 0,r<1. In this range of driving
rates we expect the role of lattice size in the analysis of S
II to be replaced by the characteristic lengthj. In addition,

FIG. 5. Attempted finite-size scaling fit of the data from Figs
and 4 for the distribution of avalanche duration~right! and mass
~left!.
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competition between dissipation and driving rate leads
new phenomena.

In Fig. 2 ~bottom! an example of a combined avalanche
shown forc50.02 and driving rater 50.5. It is remarkable
that the number of topplings per site decreases with dista
from the top. Intermittency of the dynamics as well as t
occurrence of the long-range correlations can be seen by
rect examination of the recorded activity of the systemn(t)
at each time step. For the server queue the quantityn(t) is
interesting as the measure of the energy, which is dissip
by the server at a given moment of timet. In Fig. 6 we show
an example of the recorded signal for a certain choice
parametersr, c, andL corresponding to the region~N! of the
phase diagram~cf. Fig. 1!. A combined avalanche on thi
recording is represented by a set of peaks between two
secutive drops of the signal to the base line. The Fou
spectrum of the signal~shown on top panel in Fig. 6! exhib-
its a power-law behavior. The slopew'0.9 weakly increases
with driving rater.

The scaling properties of the distributions of avalanc
queues depend on the mutual ratio of the driving and di
pation rates. In particular, the scaling function in Eq.~3!
exhibits a nontrivial dependence on both argumentsx
[tj21 and y[r j1/2. @Another suitable choice of variable
would be (tc,rt 1/2).# In Fig. 7 we show the distribution o
the avalanche mass~dissipated energy! n for fixed c50.01

FIG. 6. Sandpile noisen(t)—number of active sites at timet,
plotted against timet ~MCS! ~lower panel! and its Fourier spectrum
~top panel! for fixed driving rate r 50.33. Dissipation rate
c50.01 andL5128. Shaded area shown in the lower panel is
example of unit signal, corresponding to a combined avalanche
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PRE 62 3271SCALING OF AVALANCHE QUEUES IN DIRECTED . . .
and various driving ratesr. In general, the cutoffs of the
distributions increase and slopes decrease with incre
driving ratesr. More detailed analysis of the slopes sho
that for the range of values of driving rates the scaling
havior of the distributions can be described by the sca
exponents which depend on the driving rate. The slope
various distributions and the corresponding fractal dim
sions, which are defined in Eq.~4!, are shown against th
driving rate in Fig. 8. The dissipation rate is fixed atc
50.01. Note thatt l in Fig. 8 represents a slope of the di
tribution of the largest linear length reached in a combin
avalanche. For a range of values of driving rates the sca
exponents decrease and the fractal dimensions increase
r, while the scaling relations between various exponents
found to be satisfied within numerical error bars. The var
tion of the scaling exponents can be approximated by a lin
dependence ofr. It is interesting to note that a qualitativel
similar behavior, linear variation of the scaling expone
with driving rate, has been measured experimentally in
case of Barkhausen noise in driven disordered ferromag
@6#. Our present analysis suggests that such behavior ca
related to an interplay of driving rate and dissipation at
fects, and that it applies more universally. Dependence of
fractal dimensions~and of the slope exponents via scalin
relations! of the avalanche queues on driving rater can be
linked to ther dependence of the average length of the qu
^N&511r ^t&0. It has been shown recently@18# that the frac-
tal spectrum of the series of elementary signals in the cas
transit times in the ricepile model varies as a power of

FIG. 7. Distribution of avalanche massD(n,r ) vs massn ~num-
ber of grains! shown in double logarithmic scale for fixed dissip
tion rate c50.01 and L5192 and for various driving ratesr
50.021, 0.041, 0.083, 0.125, 0.166, 0.25, and 0.33~left to right!.
~Inset! Average mass~top!, area~middle!, and duration~bottom! of
combined avalanches plotted against driving rate (MCS21) for
fixed c50.01 andL5192. At each point average is taken ov
23106 combined avalanches. Fitting curves:̂ n&5167
3exp(11.4r 1.28), and^t&5233exp(9.6r 1.42).
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length of series. A preciser dependence of the exponents
the case of avalanche queues requires additional work
will be given elsewhere.

The opposite effects on the exponents are obtained
increasing concentration of defectsc at a fixed driving rate.
In particular, the slopes of the distributions increase and fr
tal dimensions decrease withincreasingconcentration of de-
fects in a limited range@19#.

An exact expression for the scaling functionP(x,y) in
Eq. ~3! cannot be guessed. It appears that the cut of
surfaceP(x,y) at r 5const for well balanced values ofc and
r can be approximated by a stretch-exponential function
that we have

P~X,c,r !5X2tX(r )exp@2XsX/jX~r !#. ~7!

Here X stands forn or t, and we findsn51.1460.04 and
s t51.2860.06, for the distribution of energy and duratio
respectively. The amplitudesjX(r ) can be fitted~see top
panel of Fig. 8! by the following function of driving rater:

jX~r !5AX~c! exp@rBX~c!#, ~8!

for a fixed dissipation ratec.
The observed parameter dependence of the probab

distributions is also reflected in the behavior of the avera
duration and energy of combined avalanches. Notice that

FIG. 8. ~Lower panel! Various scaling exponents of the ava
lanche queues plotted against driving rate for fixed dissipa
c50.01 andL5192. (*) indicates the productsz(t t21)'Dn(tn

21)'Ds(ts21)'1.1(t l 21). Also shown are linear fits of the
data.~Top panel! Amplitudesjn ~upper curve! andj t defined in Eq.
~7! vs driving rate.~Lines! fit curves satisfying Eq.~8! with Bn

56.2960.46 andBt54.560.51.
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average duration̂t& represents the average busy period o
server in the queue theory. Beside the average duration^t&,
we also compute the average values of number of toppl
~energy! ^n& and area^s& ~total number of distinct sites!
affected by the processing of a combined avalanche. Th
average values are shown versusr in the inset to Fig. 7 for
c50.01. The valueŝt& and ^n& increase with driving rate
faster than an exponential function. Fitting the data in
inset to Fig. 7 we find

^X&5a0X exp@a1X~c!r s#, ~9!

where X[n,t and we estimates51.260.1. Note that, in
contrast to durations and energies, the average area o
avalanche is bounded by the number of cells in the sys
^s&<L2.

As already mentioned above, for a given dissipation rac
andL@j a driving rater 0(c) exists such that fast addition o
grains compensates the losses in the bulk. In fact along
extremal line

r 0~c!;kj21/2'kAc ~10!

the coherence length remains constant. The existence o
compensation line Eq.~10! can be demonstrated by consi
ering sets of data for average durations and energies ag
driving rate r, obtained for different characteristic lengthj
;1/c. These data can be scaled according to the follow
scaling form

^X&j2DX(22tX)5G~r jz(22t t)2k!. ~11!

The corresponding scaling fits for the two casesX[t and
X[n are shown in Fig. 9. Notice that the respective exp
nents Dn(22tn)51 and z(22t t)51/2 are exact values
thus leaving only one parameter, namelyk, to be determined
by the fitting procedure. This is an advantage of having
exact solution for the elementary avalanches@2#. From the
best fit we findk51.1460.1 in the given range of values o
c ~see caption to Fig. 9!. It is evident from Fig. 9 that the
scaling function defined in Eq.~11! increases faster than a
exponential.

In the simulations a continuous flow may occur in t
case of dissipative dynamics at finite lattice sizeL when the
driving rate is increased. However, with increased sys
sizeL the behavior is different from that in the case of co
servative dynamics discussed above. From the nume
simulations alone we cannot distinguish if the affected a
of a continuous avalanche diverges with the system
L→`, or it remains finite for the range of driving rate
considered here. We will also discuss largeL limit in Sec.
IV.

We have restricted our analysis to the case where
degree of dissipation is such thatj!L. For c→0, however,
we havej→`, thus the role ofL and j is interchanged a
some finiteL. In the reverse limit whenL!j the behavior is
expected to be similar to the case of conservative dynam
at finite L, studied in Sec. II.
a

s

se

e

an
m

an

the

nst

g

-

e

m
-
al
a
e

e

cs

IV. ANALYTICAL RESULTS

We start the analytical description of the model with t
assumption that individual avalanches, which form a co
bined avalanche, are statistically independent. By the de
tion of the model, each toppling in a single avalanche occ
later than those in the previous avalanches, so that the i
vidual avalanches never intersect in the space-time po
Nevertheless, the next avalanche is sensitive to the confi
ration of occupation numbers left by the previous av
lanches. In this way the individual avalanches are depend
on preceding avalanches. On the other hand, it is kno
from Abelian properties of the directed sandpile model@2#,
that the recurrent state is characterized by the indepen
distribution of occupation numbers zero and one at each
Hence, one can expect that this property of recurrent s
provides independent distribution of single avalanches
least for asymptotically large systems. This assumption
lows us to consider the process of driving the directed sa
pile automaton as a sequence of i.i.d. events. Another im
tant consequence of the statistical independence is that s
of combined avalanches can be considered as recu
events, i.e., the probability of two successive sto
Prob(t1 ,t2) at the momentst1 and t11t2 is given by the
product Prob(t1)Prob(t2).

We consider the probability distributionF(t) that a com-
bined avalanche starting at the momentt50 stopsfor the
first time at the discrete momentt. This means thatF(t) is
the probability that the stop of all preceding elementary a
lanches occurs until the momentt. Thus,F(t) coincides with
the probability distribution of duration of combined av
lanches when an ensemble of events is considered. A

FIG. 9. Finite-size scaling plot of the average duration^t& ~top!
and masŝ n& ~bottom! according to Eq.~11!. Data are taken for
values ofc50.01, 0.0125, 0.015, and 0.02 such thatj,L5192 is
satisfied. Note that the exponents are exact and the fitted v
k51.14 within numerical error bars.
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with F(t), it is useful to consider the functionU(t), which is
defined as the probability that all preceding single a
lanches stop to the momentt regardlessof how many stops
of combined avalanches occurred beforet. Noting that stops
of combined avalanches are recurrent events, we can w
for F(t) andU(t) the following identity@20#:

U~ t !5F~1!U~ t21!1F~2!U~ t22!1•••1F~ t !U~0!,
~12!

where it is convenient to putF(0)50 andU(0)51. For the
generating functions defined by

u~s!5(
t50

`

stU~ t ! ~13!

and

f ~s!5(
t51

`

stF~ t ! ~14!

one easily gets from Eq.~12! the known equation of the
theory of recurrent events@20#

f ~s!5
u~s!21

u~s!
. ~15!

The total probability that a combined avalanche ever stop
given by f (1). Therefore, the probability that a combine
avalanche never stops, i.e., the probability of a continu
flow, which is given by

F~`!512 f ~1!, ~16!

does not vanish ifu(1) in Eq. ~15! is finite u(1),`.

A. CasecÄ0

In the case of conservative dynamics (c50) the probabil-
ity distribution of durations of elementary avalanches
given by Eq.~1!. Then we can estimate the probabilityU(t)
as follows. LetDt[1/r be the average time interval betwee
addition of successive particles to the first row. The proba
ity Prob(x<t) that a single avalanche has a duration le
than t is

Prob~x<t !;12
b

t1/2
~17!

for larget, whereb is a constant of the order unity whenL is
large. Then for timest@Dt we have

U~ t !;S 12
b

t1/2D S 12
b

~ t2Dt !1/2D •••S 12
b

~Dt !1/2D .

~18!

Introducingk5t/Dt we can write Eq.~18! as the sum

ln U~ t !5 (
n51

k

lnS 12
b

~nDt !1/2D <2
k1/2

~Dt !1/2
. ~19!

Approximating the sum by an integral leads to
-

ite

is

s

l-
s

U~ t !;S Art 2bAr

12bAr
D 2b2r

exp@22b~rAt2Ar !# ~20!

for t@1 and 0,r<1. For the infinite lattice there exists
constantc2 such that

u~1!<c2(
t50

`

exp~2rAt !,`. ~21!

Therefore, we can find that for all finite driving ratesr .0
there is a nonzero probability of continuous flow. In partic
lar, the sum in Eq.~21! diverges at smallr as

u~1!;
1

r 2
~22!

leading to the probability of stopf (1);122r 2b2, which
decreases from unity as soon as a finite driving rate is
plied. Then the probability of continuous flow Eq.~16! in-
creases from zero by the same amount, i.e.,

F~`!;r 2,r→0. ~23!

For larger we expect that

12F~`!;exp~2r !. ~24!

If the size of the system is finite (L,`) the probability of
stopsU(t) is bounded fromaboveby a finite value

U~ t !<~rL !2b2r /2 exp~22brL1/2!, ~25!

which follows from Eq.~20! taking only the dominantt be-
havior for t5L@1.

B. CasecÌ0

In the case of finite dissipation ratec.0 the dissipation
leads to a finite characteristic lengthj in the distribution of
elementary avalanches in Eq.~2!. This can be easily demon
strated using mean-field arguments@21# in reaction-diffusion
systems. Let us suppose that at each site of the lattice on
speciesA or B is living. These species represent two possi
states of the original model:A corresponds to the empty site
B to the occupied site. Due to the external driving force, n
particlesf are added to the first row of the lattice at rater.
The propagation of particles can be described by the follo
ing rules:

A1f→B, B1f→A12f. ~26!

The kinetic equations corresponding to this scheme
‘‘chemical’’ reactions are

ṅA~ l !5nf~ l !@nB~ l !2nA~ l !#, ~27!

ṅB~ l !5nf~ l !@nA~ l !2nB~ l !#, ~28!

ṅf~ l !52nf~ l !12nf~ l 21!nB~ l !~12c!, ~29!

wherenA(l ), nB(l ), andnf(l ) are concentrations of spe
ciesA, B, andf, respectively, at thel th row. In the steady
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state we haveṅA5ṅB5ṅf50 and Eqs.~27!–~29! lead to the
simple conditions for the concentrationsnA5nB51/2 and
@22#

nf~ l !5r ~12c! l . ~30!

For c.0, the density of particlesf, and hence the numbe
of topplings in an avalanche, decay exponentially with
distancel from the top asnf(l )5r exp(2l /j). This im-
plies that the characteristic length of the avalanche isj21

;2 ln(12c);c. Therefore the above results, in particul
Eq. ~25!, obtained for the case of finite latticesL and c50
apply also for the casec.0 by the substitutionL→Lc with

Lc5min$j,L%. ~31!

C. Bounds for the busy time

If the combined avalanches are finite~i.e., there is no
continuous flow!, we can estimate their average duration u
ing the known theorem from the theory of recurrent eve
~Ref. @20#, Ch. XIII, Theorem 3!. According to this theorem
the inverse average time of combined avalanches^t&21 co-
incides with the limit of the sequenceU(t) when t→`.
Using the bound forU(t) given by Eq.~25! we get

^t&>~rL !b2r /2 exp~2brL1/2!. ~32!

The true asymptotics of̂t& possibly contains an additiona
prefactorL1/2 as in the case forr 50. Notice that numerically
the average duration as a function ofr ~cf. inset to Fig. 7!
increases faster than the exponential, which agrees with
~32!.

The combinationrL 1/2 appears as a characteristic para
eter determining the duration of combined avalanches. T
for j,L it follows from Eqs.~32! and ~30! that the coher-
ence length remains constant ifr varies withc asr;Ac, i.e.,
the increasing driving rate compensates the dissipation.

Another interesting feature of the probability distributio
at finite driving rates is the occurrence of stretch-exponen
cutoffs in both dissipative and nondissipative cases~cf. Figs.
3, 4, and 7!. Indeed, we can see from Eq.~12! that U(t)
.F(t) for all finite t. Therefore, for the nondissipative ca
we have an exponential decay of combined avalanches

P~ t !;F~ t !,~rt !2b2r /2 exp~22brAt ! ~33!

in the thermodynamic limitL→`, which follows directly
from Eq. ~20! for large t.

For finite lattice sizesL or finite dissipationc.0 the
functionU(t) is bounded from above by a constant given
Eq. ~25! with L replaced byLc . In this case we can find th
origin of an exponential cutoff in the following way. Con
sider an enveloping process that corresponds to propag
of the front of the combined avalanches. Duration of an
ementary avalanche starting att i0 is a simple linear function
of time t i5t2t i0. The enveloping process consists of tho
topplings which occur at the maximal distance from the ti
axis at each moment of timet. The positionx of the front is
an one-dimensional random walk confined to the inter
@0,j#. Starting fromx50, the walk performs a step ahea
with some probability, and a step back, the length of which
e

-
s

q.

-
s,

al

ion
l-

e
e

l

s

a random variable. The combined avalanche stops if the
dom walk returns to the origin where it is trapped. The pro
ability of the return to the origin from an arbitrary positionx
is not smaller thanU(j), where

U~j!5~r j!2b2r /2 exp~22brj1/2!, ~34!

andj;1/c as above. The survival timet of the random walk
under consideration does not exceed the period of succe
tests in the Bernoulli scheme with the probability of ‘‘su
cess’’ 12U(j). The period of tests in the Bernoulli proces
has the geometrical distribution

Prob~x5t !5@12U~j!# tU~j!. ~35!

Hence, the time distribution for combined avalanches
bounded from above by the exponential function in Eq.~35!.
Using Eq.~34!, we obtain

P~ t !;F~ t !,A~12U~j!! t;A exp@2tU~j!#, ~36!

whereA is a constant andU(j) is given by Eq.~34!. Note
that this expression represents an upper bound of the d
bution of busy periods in Eq.~7!. Therefore 1/U(j) plays the
role of an effective correlation length at finiter, in a quali-
tative agreement with the numerical data and Eq.~8! of Sec.
III.

V. CONCLUSIONS AND DISCUSSION

We have shown that a finite driving rater is a relevant
perturbation, which alters self-organized critical states in
directed sandpile automata. In the case of conservative
namicsr couples tô t&0;L1/2, thus leading to enhanced e
fects when the length scale is increased toL→`. A continu-
ous flow eventually occurs, in which critical long-rang
correlations are destroyed. On a finite length scale,Lc
5min$j,L%,` either due to finite screening lengthj or finite
system sizeL, the critical states occur with qualitatively ne
correlation properties, which is manifested in:~i! a multifrac-
tal scaling of combined avalanches whenL!j, and~ii ! oc-
currence of compensation between driving and dissipa
along a liner 0(c);j21/2;Ac, whenL@j. How precisely
the effective coherence lengthjeff(r ) of combined ava-
lanches increases with driving rate depends on details of
relaxation process and grain addition. In the case of a fi
input current at each site of the system, we find a fin
toppling rate at all scales,nf(l );r /c, compatible with
jeff(r )→`. However, if grains are added only at the top, t
correlation length increases exponentially withr in the range
0,r<1, but remains finite presumably up to large drivin
rates. Here we restricted the discussion to the caser<1,
where queues of Dhar–Ramaswamy avalanches occur. A
lanche queuing for this range of driving rates is peculiar
our model, due to strictly local critical height rule and th
directed transport. In the ricepile and in the symmetric Ab
lian models@12,13# a perfect queuing is prevented by th
collision of avalanches, which occurs at any finiter .0. Ow-
ing to the exact solution for behavior of elementary av
lanches@2#, we were able to study properties of the queue
detail. In particular, we find that an average busy period
bounded from below by an exponential functio
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^t&>(rL )b2r /2 exp(2brL1/2). The avalanche queue can be r
garded as a multifractal set, in which the average lengt
regulated by the driving rate as^N&511rL 1/2. There are no
waiting times for elementary avalanches, therefore
model corresponds to the realization known in the qu
theory as ‘‘infinite number of servers.’’ Hence, the avera
number of jobsqn that can be served in parallel is unlimite
It should be stressed that our cellular automaton represe
new example in the queue theory in which queuing jobs
distributed according to a power-law distribution with th
exponentn,2 and average duration of jobs is limited by
control parameterLc5min$j,L%. We hope that more practica
examples of this class can be found. We also believe tha
study of the scaling properties of the queues, as we h
done in this work, adds a new aspect which has not b
considered so far in the queue theory. The observed non
versal scaling properties of avalanche queues can be re
to variation of the average length of the queue with drivi
rate. The scaling exponents are found to vary approxima
linearly with the driving rater. A similar r dependence wa
observed experimentally in other driven disordered syste
and seems to apply more generally.

A continuous activity on the lattice, corresponding to
flow phase occurs forr>L21/2 in the case of conservativ
dynamics. On an infinite latticeL→` probability of continu-
ous flow increases from zero asF(`);2b2r 2, whereas
probability of an intermittent avalanche-like flow decreas
from unity with the same ratef (1);122b2r 2. For the case
S.
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of dissipative dynamicsc.0 an effective coherence lengt
increases withr for 1/c,L→`. Our results suggest that th
probability f (1) remains finite even at high driving rates.
the limit L→` the compensation line extends to the po
c→0, r→0. For the range of driving rates studied in th
work we expect that the transport properties of grains in t
model remain unchanged~looked at the time scale of ava
lanche propagation!, compared to the transport at zero dri
ing rate @23#. Collision of avalanches, which occurs first
ratesr .1, may accelerate the grain transport possibly
sulting in a new scaling behavior of the distribution of tran
times. Notice that due to local critical height rules and det
ministic topplings the depth of the active zone~defined in
Ref. @12#! does not change in the flow phase of our mode

The analytical results in Sec. IV are derived assuming t
elementary avalanches may be considered as indepen
events. We checked by computing numerically the corre
tion function between events in a queue for finiteL where
rather weak correlations occur. The correlations incre
with the ‘‘distance’’ t between avalanches asth, whereh
50.0560.01 with statistical error bars.
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